Studies on the Opening of Dioxanone and Acetal Templates and Application to the Synthesis of 1α ,25-Dihydroxyvitamin D_2^1

Juan R. Granja, Luis Castedo, and Antonio Mouriño*

Departamento de Química Orgánica, Facultad de Química y Sección de Alcaloides del CSIC, Universidad de Santiago, 15706 Santiago de Compostela, Spain

Received July 13, 1992

The Lewis-acid-mediated nucleophilic substitution of dioxanone and acetal templates for the construction of 25-hydroxylated side chains of vitamin D_2 metabolites and analogs has been studied. As an application a highly stereoselective synthesis of 1α , 25-dihydroxyvitamin D₂ by the dienyne route is described.

Introduction

Research carried out during the last two decades has led to the discovery that vitamin D_3 (1a, Figure 1), the natural vitamin D, is transformed via successive hydroxylations in the liver and in the kidney into $1\alpha, 25$ dihydroxyvitamin D_3 (1b). This metabolite, the hormonally active form of vitamin D_3 , is an important factor in the regulation of mineral metabolism.² It has recently been discovered that 1b is also involved in the regulation of cell proliferation and differentiation processes.³ This finding has renewed the interest of chemists and biochemists in the vitamin D field due to the possibility of treating of several types of cancer and skin disorders with this hormone or its analogs.^{4,5}

It has been assumed that the metabolism and biological activity of the nonnatural vitamin D_2 (2a) parallel those of vitamin D_3 , and for this reason it has been administered to humans and commercially important mammals.^{2a,6} However, although it is well-established that vitamin D_2 also undergoes double hydroxylation to 1α ,25-dihydroxvvitamin $D_2(2b)$, differences in posterior metabolism and biological activity between 2b and 1b have also been identified.^{7,8} Further details of the biological significance of 1α , 25-dihydroxyvitamin D₂ remain largely unexplored

Figure 1.

due to the scarcity of synthetic material. Interest in the biological evaluation of vitamin D_2 metabolites has previously led us to synthesize 25-hydroxyvitamin D_2 (2c).⁹ We now report our results on the synthesis of the more important 1α , 25-dihydroxyvitamin D_2 (2b).

Results and Discussion

Synthetic Strategy (Scheme I). Although considerable effort has been devoted to the synthesis of vitamin D_3 metabolites,¹⁰ to date only two syntheses of 1α ,25hydroxyvitamin D_2 have been reported.¹¹ Our synthetic approach to the above metabolite (Scheme I) is based on previous findings of Lythgoe and co-workers, who were able to obtain the triene system of vitamin D from the corresponding dienyne precursor by partial hydrogenation

^{(1) (}a) This article was taken in part from PhD thesis of Juan R. Granja (Universidad de Santiago, July 1988). (b) For preliminary communications describing part of this work, see: Castedo, L.; Granja, J.; Maestro, M. A.; Mouriño, E. Tetrahedron Lett. 1987, 28, 4589. (c) Mouriño, A.; Castedo, L.; Fernández, B. R.; Granja, J.; Maestro, M. A.; Mascareñas, J. L.; Sarandeses, L. A. Vitamin D. Molecular, Cellular and Clinical Endocrinology; Norman, A. W., Schaefer, K., Grigoleit, H. G., Herrath, D. v., Eds.; Walter de Gruyter: Berlin, New York, 1988; p 34.

^{(2) (}a) Norman, A. W. Vitamin D, The Calcium Homeostatic Steroid Hormone; Academic Press: New York, 1979. (b) De Luca, H. F.; Paaren, H. E.; Schnoes, H. K. Top. Curr. Chem. 1979, 83, 1. (c) Norman, A. W. Vitamin D, Molecular Biology and Clinical Nutrition; Marcel Dekker: New York, 1980. DeLuca, H. F.; Schnoes, H. K. Ann. Rev. Biochem. 1983, 52, 411. (d) Ikekawa, M. Med. Chem. Rev. 1987, 7, 333. (e) Dickson, I. Nature 1987, 325, 18.

 ⁽³⁾ For reviews, see: (a) Ostrem, V. K.; DeLuca, H. F. Steroids 1987, 40, 74. (b) Holick, H. F. 1α, 25-(OH)₂-D₃ a Novel Hormone with Unlimited Potential. Kidn. Int. 1987, 32, 912.

⁽⁴⁾ For some analogs of 1α,25-(OH)₂-D₃ with promising properties for the treatment of psoriasis, see: Figadère, B.; Norman, A. W.; Henry, H. L.; Koeffler, H. P.; Zhou, J.-Y.; Okamura, W. H. J. Med. Chem. **1991**, 34, 2452 and references cited therein.

⁽⁵⁾ For a summary of the role of the vitamin D endocrine system in health and disease see: (a) Reichel, H.; Koeffler, H. P.; Norman, A. W. N. Engl. J. Med. 1989, 320, 980. (b) DeLuca, H. F.; Burmester, J.; Darwish, H.; Krisinger, J. Comprehensive Medicinal Chemistry; Pergamon Press: New York, 1990; Vol. 3, p 1129. (6) DeLuca, H. F. Hanbd. Physiol. 1978, 7, 265.

 ^{(7) (}a) Jones, G.; Schnoes, H. K.; DeLuca, H. F. Biochemistry 1975, 14, 1250. (b) Norman, A. W.; Roth, J.; Orci, L. Endocr. Rev. 1982, 3, 331. (c) Reddy, G. S.; Tserng, K. *Biochemistry* 1986, 25, 5328 and references cited therein. (d) Koszewski, N. J.; Reinhardt, T. A.; Napoli, J. L.; Beitz, D. C.; Horst, R. L. Biochemistry 1988, 27, 5785.

⁽⁸⁾ Interestingly, it has also been reported that vitamin D_2 ; and some of its metabolites are less toxic than the corresponding compounds of the vitamin D₃ series: (a) Hunt, R. D.; Garcia, F. G.; Wals, R. J. J. Nutr. 1972, 102, 957. (b) Sjoden, G.; Smith, C., Lindgren, U.; DeLuca, H. F. Proc. Soc. Exp. Biol. Med. 1985, 178, 432. (c) Tjellesen, L.; Christiansen, C.; Hummer, L. Vitamin D: Chemical, Biochemical and Clinical Update; Norman, A. W., Schaefer, K., Grigoleit, H. G., Herrath, D. v., Eds.; Walter de Gruyter: Berlin, 1985; pp 3-12. (d) Tjellensen, L.; Gotfredsen, A.; Christiansen, C. Calcif. Tissue Int. 1985, 37, 218.

⁽⁹⁾ Sardina, F. J.; Mouriño, A.; Castedo, L. J. Org. Chem. 1986, 51, 1264

⁽¹⁰⁾ For reviews, see: (a) Pardo, R.; Santelli, M. Bull. Chim. Soc. Fr.
(10) For reviews, see: (a) Pardo, R.; Santelli, M. Bull. Chim. Soc. Fr.
(1985, 98. (b) Vitamin D Active Compounds; Quinkert, G., Ed. Synform
(1985, 3, 41; 1986, 4, 131; 1987, 5, 1. (c) Wilson, S. R.; Yasmin, A. Studies
(c) Natural Products Chemistry; Ur-Raman, A., Ed.; Elsevier Science
Publishers, B. V.: Amsterdam, 1992.

<sup>Publishers, B. V.: Amsterdam, 1992.
(11) (a) Baggiolini, E. G.; Iacobelli, J. A.; Hennessy, B. M.; Batcho, A. D.; Sereno, J. F.; Uskokovic, M. R. J. Org. Chem. 1986, 51, 3098. (b) Sicinski, R. R.; Tanaka, Y.; Schnoes, H. K.; DeLuca, H. F. Bioorganic Chem. 1985, 13, 158. For syntheses of the 25-hydroxyvitamin D₂ side chain, see: (c) Wilson, S. R.; Davey, A. E.; Guazzaroni, M. E. J. Org. Chem. 1992, 57, 2007. (d) Hanekamp, J. C.; Rookhuizen, R. B.; Hevel, H. T.; Bandrama, L. Tattshadava, Lett. 1991, 29, 549.</sup> H.; Bos, H. J. T.; Brandsma, L. Tetrahedron Lett. 1991, 32, 5397.

and subsequent thermal isomerization.¹² The dienyne 3 is envisaged as the result of palladium-catalyzed coupling between the known enyne 4^{13} and the vinyl triflate $5.^{14}$ Our synthesis of vinyl triflate 5 was based on our previous work on the construction of 25-hydroxyvitamin D_2 side chain by stereospecific S_N2' syn displacement of carbamates with cuprates.^{9,15} However, instead of stereoselectively reducing a propargyl ketone, which gives at best a 17:1 mixture of the desired 22R-alcohol 7 and its inseparable 22S-epimer.⁹ we decided to explore an alternative route that could lead to 7 highly stereoselectively and more reproducibly.

Lewis-Acid-Mediated Nucleophilic Substitution of **Dioxanone and Acetal Templates.** For the construction of 7 and its 22S-isomer, we studied the Lewis-acid-assisted nucleophilic opening of chiral acetals and dioxanones discovered by Johnson¹⁶ and Seebach,¹⁷ respectively. These reactions have evolved as powerful methods for the stereoselective formation of carbon-carbon bonds.¹⁶⁻¹⁸ The required known aldehyde 9a^{9,19} (Figure 2) was prepared in 95% yield from benzoate 8²⁰ [(i) O₃, MeOH, CH₂Cl₂, py, (ii) (EtO)₃P].^{1b} The acetals 10a-g were prepared (82-97%) by reaction of the aldehyde 9a with the corresponding

(13) (a) Castedo, L.; Mascareñas, J. L.; Mouriño, A. Tetrahderon Lett. 1987, 28, 2099. (b) Baggiolini, E. G.; Hennessy, B. M.; Iacobelli, J. A.; Uskoković, M. R. Tetrahedron Lett. 1987, 28, 2095. (c) For a short route to this compound, see: Okamura, W. H.; Aurrecoechea, J. M.; Gibbs, R. A.; Norman, A. W. J. Org. Chem. 1989, 54, 4072.

(14) For related palladium-catalyzed couplings, see: (a) Castedo, L. Mouriño, A.; Sarandeses, L. A. Tetrahedron Lett. 1986, 27, 1523. Castedo, L.; Mascareñas, J. L.; Mouriño, A.; Sarandeses, L. Tetrahedron Lett. 1988, 29, 1203. (c) Mascareñas, J. L.; Sarandeses, L. A.; Castedo, ; Mouriño, A. Tetrahedron 1991, 47, 3485. (d) Curtin, M. L.; Okamura, W. H. J. Am. Chem. Soc. 1991, 113, 6958.

(15) Sardina, F. J.; Mouriño, A. Castedo, L. Tetrahedron Lett. 1983, 24.4477.

(16) (a) Bartlett, P. A.; Johnson, W. S.; Elliott, J. D.; J. Am. Chem. Soc. 1983, 105, 2088. (b) Choi, V. M. F.; Elliott, J. D.; Johnson, W. S. Tetrahedron Lett. 1984, 25, 591. (c) Johnson, W. S.; Crackett, P. H.; Elliott, J. D.; Jagodzinski, J. J.; Lindell, S. D.; Natarajan, S. Tetrahedron Lett. 1984, 25, 3951. For reviews, see: (d) Seebach, D.; Imwinkelreid, R.; Weber, T. Modern Synthetic Methods; Scheffold, R., Ed.; Springer Verlag: Berlin, 1986, Vol. 4, p 125. (e) Alexakis, A.; Mangeney, P. Tetrahedron: Asymmetry 1990, 1, 477.

(17) (a) Seebach, D.; Imwinkelreid, R.; Stucky, G. Helv. Chim. Acta 1987, 70, 448. (b) Seebach, D.; Zimmerman, J.; Gysel, H.; Ziegler, R.; Ha, T. K. J. Am. Chem. Soc. 1988, 110, 4763.

diol in the presence of BF₃·OEt₂.²¹ The nonepimerization of the starting aldehyde 9a at C(20) during acetal formation was demonstrated for 10a, the ¹H NMR spectrum of which differed from that of its 20R-epimer 11, which was prepared under the same reaction conditions from aldehyde 9b.22 Dioxanone 10h was prepared in 95% yield by Noyori's procedure.²³ Treatment of aldehyde 9a with the bis-silyl derivative of (R)-3-hydroxybutyric acid²⁴ in CH_2Cl_2 at -78 °C in the presence of 4% trimethylsilyl triflate and 2%2,6-di-tert-butylpyridine.

Preliminary experiments were carried out using silvlacetylene 12a and acetals 10a and 10b in CH₂Cl₂ and in the presence of TiCl₄ (1.6 equiv, -78 °C, 5 min).²⁵ Although it has previously been reported that the reaction of similar substrates with simple silylacetylenes opens the acetal moiety to give almost exclusively the 22R-isomer,²⁶ in our cases no reaction took place. We therfore tried stronger nucleophilic reagents such as stannylacetylene 12b.1b,27 As previously reported,^{1b} in the presence of TiCl₄, 12b reacted with the chiral dioxane 10a to give an 87:1 mixture of 13a and 14a (95% entry 1, Table I), in both of which the C(25)-OH group is deprotected.²⁸ Treatment of 10b with 12b under the same reaction conditions gave a 3:2 mixture of 13b and 14b (89%, entry 2), indicating that the stereogenic center at C(20) does not play an important role in inducing stereoselectivity.²⁹ Efforts to improve the stereoselectivity of the reaction by using Lewis acids other than TiCl₄ (including the recommended titanium blend [6/5 TiCl₄/Ti(O-*i*-Pr)₄]^{16c}) were unsuccessful (entries 3-6). The use of other stannylacetylenes to avoid deprotection of the hydroxyl group at C(25) was also unsuccessful (entries 7-10).

We next studied the reaction of 12b with acetals 10c-e. The reaction of acetal 10c derived from (2S,4S)-2,4pentanediol under the usual reaction conditions proceeded

(20) Benzoate 8 was prepared in 95% yield from the corresponding known alcohol (BzCl, py). For the preparation of this alcohol see: (a) Toh, H. T.; Okamura, W. H. J. Org. Chem. 1983, 48, 1414. (b) Mascareñas, J. L.; Mouriño, A.; Castedo, L. J. Org. Chem. 1986, 51, 1269.

(21) Efforts to prepare these acetals using PPTS and azeotropic removal of water in various solvents (benzene, CH_2Cl_3 , toluene) were unsuccessful.

(22) The aldehyde 9b was obtained by refluxing a solution of 9a in s-collidine for 48 h, followed by reduction of the crude mixture with NaBH4, separation of alcohols 18a and 18b, and further oxidation of 18b with PDC to give 9b.

(23) (a) Noyori, R.; Murata, S.; Suzuki, M. Tetrahedron 1981, 37, 3899. (b) Schreiber, S. L.; Reagan, J. Tetrahedron Lett. 1986, 27, 2945. Pure dioxanone 10h was obtained by crystallization from a solution of the resulting 20:1 mixture of 10h and its trans isomer in Et₂O.

(24) For an economical method for the preparation of (R)-3-hydroxybutyric acid by depolymerization of inexpensive poly(hydroxybutanoate), see: (a) Seebach, D.; Züger, M. F. Helv. Chim. Acta 1982, 65, 495; (b) Seebach, D.; Züger, M. F. Tetrahedron 1984, 25, 2747. (25) Increasing amounts of TiCl₄ (1-10 equiv) gave the starting aldehyde

9a or a mixture of 9a and its dimethoxy acetal

(26) Yamamoto, Y.; Nishii, S.; Yamada, J. J. Am. Chem. Soc. 1986, 108, 7116.

(27) This reagent has also recently been used for the opening of steroidal acetal templates: Yamamoto, Y.; Abe, H.; Nishii, S.; Yamada, J. J. Chem. Soc., Perkin Trans. 1 1991, 3253.

(28) The ratio of compounds 13a and 14a were determined by HPLC. In previous experiments,^{1b} the ratio of these compounds was determined ¹H NMR by

(29) For discussion of the opening of α -substituted chiral acetals, see ref 18b and references cited therein.

^{(12) (}a) Dawson, T. M.; Dixon, J.; Littleword, P. S.; Lythgoe, B.; Saksena, A. K. J. Chem. Soc. (c) 1971, 2960. (b) Harrison, R. G.; Lythgoe, B.; Wright, P. W. J. Chem. Soc., Perkin Trans. 1 1974, 2654.

⁽¹⁸⁾ For recent reports of detailed mechanistic studies, see: (a) Mori, Ishihara, K.; Flippin, L. A.; Nozaki, K.; Yamamoto, H.; Bartlett, P. A.; Heathcock, C. H. J. Org. Chem. 1990, 55, 6107. (b) Denmark, S. E.; Almstead, N. G. J. Am. Chem. Soc. 1991, 113, 8089. (c) Denmark, S. E.; Almstead, N. G. J. Org. Chem. 1991, 56, 6458. (d) Denmark, S. E.; Almstead, N. G. J. Org. Chem. 1991, 56, 6485. (e) Sammakia, T.; Smith, R. S. J. Org. Chem. 1992, 57, 2997.

^{(19) (}a) Inhoffen, H. H.; Quinkert, G.; Schütz, S.; Friedrich, G.; Tober, E. Chem. Ber. 1958, 91, 781. (b) Lythgoe, B.; Roberts, D. A.; Waterhouse, J. Chem. Soc., Perkin Trans. 1 1977, 2608. L

Figure 2.

 Table I.
 Lewis-Acid-Mediated Opening of Dioxanones and Acetal Templates⁴

entry	substrate	reagent	Lewis acid	products (yield (%))	22R:22S ratio
1	10a	12b	TiCl ₄	13a, 14a (95)	87:1 ^b
2	10b	12b	TiCl4	13b, 14b (89)	$3:2^{c}$
3	10b	1 2b	TiCl ₄ /Ti(O- <i>i</i> -Pr) ₄	13b, 14b (85)	1:1°
4	10b	1 2b	SnCL		
5	10b	12b	BF ₃ ·Et ₂ O		
6	10b	12b	Ti(O-i-Pr)₄		
7	10b	12c	TiCL		
8	10b	12 d	TiCL	13b, 14b (69)	3:2°
9	10b	12e	TiCL	13b, 14b (78)	3:2°
10	10b	12e	TiCL/Ti(O-i-Pr)4	, , ,	
11	10c	12b	TiCL	13c, 14c (94)	1:12 ^c
12	11	12b	TiCL	15a. 15b (72)	8:1 ^d
13	10d	12b	TiCL	13d, 14d (97)	5:1ª
14	10e	12b	TiCL	13e, 14e (93)	1:9e
15	10 f	12b	TiCL	13f, 14f (89)	1:2.6°
16	10g	12b	TiCL	13g. 16 (82)	f
17	10h	12b	TiClas	13h, 14h (87)	45:1 ^h
18	10 h	12b	TiCL	,	

^a A 1 M solution of Lewis acid in CH₂Cl₂ (1.6 equiv) was added by syringe over 5 min to a cooled (-78 °C) 0.1 M solution of substrate in CH₂Cl₂. ^b Isomers ratio determined by integration of the HPLC peaks (UV detector) of the mixture of benzoates 17a-17b resulting from removal of the chiral auxiliary (PDC, CH₂Cl₂; K₂CO₃, MeOH; 96%). Ratio of isomers determined by ¹H NMR analysis of the crude mixture. The R,S configuration at C(22) was established by removal of the chiral auxiliary (PDC, CH₂Cl₂; K₂CO₃, MeOH; 75-95%). ^d Isomers ratio determined by ¹H NMR analysis of the crude mixture. The R, S configuration at C(22) was established by analogy with the results obtained above. e Isomers ratio determined by ¹H NMR analysis of the crude mixture. The R,S configuration at C(22)was established by removal of the chiral auxiliary (PDC, CH₂Cl₂; SmI₂, MeOH-THF; 73-79%). / 1H NMR analysis of the crude mixture showed a 4:1 ratio of compounds 13g and 16. The R configuration of both compounds at C(22) was established by removal of the chiral auxiliary (PDC, CH2Cl2; K2CO3, MeOH, 80-90%). # A 0.1 M solution of TiCl4 was used. h Isomer ratio determined by integration of the HPLC peaks (UV detector) of the mixture of benzoates 17a-17b resulting from removal of the chiral auxiliary (2 equiv of LDA, THF, $-78 \ ^\circ C \rightarrow rt, 91\%$).

less diastereoselectively to give the 22S-isomer 14c as the main product (entry 11). A similar degree of stereoselectivity was obtained when the acetal 11 was treated with the same stannylacetylene 12b (entry 12). The lower ratio of the anti-Cram isomers (entries 11 and 12) with respect to their C(22) isomers can be explained in terms of the chirality dictated by the acetal template, which is the opposite of that dictated by the C(20) configuration, and by a predominant $S_N 2$ Johnson-type mechanism that competes to some extent with an oxocarbenium pathway favored by the α -chiral center.¹⁸

The cost of the (2R,4R)- and (2S,4S)-2,4-pentanediols led us to study the reactions of the acetals 10d-g and the dioxanone 10h with the same stannylacetylene 12b. The five-membered ring acetals 10d and 10e, which were prepared from the corresponding chiral butanediols,³⁰ afforded 5:1 and 1:9 mixtures of 22R- and 22S-epimers, respectively (entries 13, 14). Surprisingly, the anti-Cram isomer 14e (entry 14) was produced in a higher ratio than the Cram isomer 13d (entry 13). Monosubstituted dioxanes 10f and 10g were prepared, respectively, from the readily available and less expensive (3S)- and (3R)-1,3butanediols introduced by Johnson.^{16b,31} Reaction of 10f with 12b under the usual conditions took place with low stereoselectivity to give the 22S-isomer 14f as the main product, as expected (entry 15). Interestingly, opening the acetal 10g afforded a 4:1 mixture of the isomers 13g and 16, which are both 22R isomers (entry 16). It is worth noting that removal of the chiral auxiliaries in the usual way from 13g and 16 gave the propargyl alcohol 17a as the sole product. The unexpected formation of 16 may be due to the establishment of equilibrium between the Lewis acid complex 10g-MX_n (A) and the intimate ion pair 10g-

^{(30) (}a) Johnson, W. S.; Harbert, C. A.; Ratcliffe, B. E.; Stipanovic, R. D. J. Am. Chem. Soc. 1976, 88, 6188. (b) The (2S,3S)-2,3-butaneediol was prepared (PTSA, EtOH; LiAlH4, Et₂O; 40%) from 1,4-ditosyl-2,3-o-isopropylidene-L₈-threitol, which was obtained from 1-tartaric acid: Carlmack, M.; Kelly, C. J. J. Org. Chem. 1968, 33, 2171.

⁽³¹⁾ These diols can be prepared by reduction of the corresponding 3-hydroxybutyrate derivatives: Danishefsky, S. J.; Armistead, D. M.; Wincott, F. E.; Selnick, H. G.; Hungate, R. J. Am. Chem. Soc. 1987, 109, 8117.

⁽³²⁾ The conformations of 10g and of complexes A, C, and T are the results of MM2 molecular mechanics calculations.

 MX_n (C) via the external ion pair $10g-MX_n$ (B),^{18b} which avoids nonbonding interactions between the Lewis acid and the ring methyl group (Scheme II).³² Nucleophilic attack on the complex $10g-MX_n$ (C) would then give 16 with 22*R* stereochemistry, while nucleophilic attack on the Lewis acid complex $10g-MX_n$ (T) would lead to 13g. Finally, the dioxanone 10h reacted highly stereoselectively to afford a 45:1 mixture of 13h and 14h (87%, entry 17). Interestingly, lower concentrations of TiCl₄ (0.1 M) and longer reaction times were required to complete the opening of the dioxanone.³³ The high stereoselectivity and inexpensiveness of the reaction with 13h led us to use this compound as the appropriate intermediate for the synthesis of 1α ,25-dihydroxyvitamin D₂.³⁴

Syntheses of 1α ,25-Dihydroxyvitamin D₂ (Scheme III). Protection of the acid 13h with chloromethyl methyl ether under standard conditions³⁵ gave 19 in 92% yield. The chiral auxiliary was removed by treatment of 19 with LDA (2 equiv) in THF to give the alcohol 7 in 91% yield (de 95%). The alcohol 7 was transformed into ketone 20 following the procedure described previously.^{9,15,36}

Construction of the triene was begun by treating 20 with LDA and trapping the kinetic enolate with $PhNTf_2$ to give vinyl triflate 5 (89%). Palladium-catalyzed crosscoupling between 5 and enyne 413 afforded dienyne 3 (94%).¹⁴ Partial hydrogenation (balloon pressure) of 3 in the presence of Lindlar palladium catalyst poisoned with quinoline in hexanes, with careful monitoring of the reaction by TLC to avoid overreduction, followed by thermal isomerization afforded a 88:12 mixture of the protected vitamin D 22 and previtamin D 21 (92%). Removal of the protecting groups by treatment with cationexchange resin in deoxygenated methanol, followed by flash chromatography, gave the desired 1α ,25-dihydroxyvitamin D₂ (2b, mp 159-161 °C (lit.^{11a} mp 159-161 °C)), identical to that of an authentic sample (¹H NMR and HPLC).

In conclusion, the des-A,B-steroidal acetal 10g (derived from (3R)-1,3-butanediol) and the less expensive dioxanone

10h (derived from (3R)-3-hydroxybutyric acid) are excellent intermediates for the preparation of 1α ,25-dihydroxyvitamin D₂ (2b) by the dienyne route.

Experimental Section

General Procedures.³⁷ High-performance liquid chromatography (HPLC) was performed using a Zorbax-sil 10/250 column and a programmable multiwavelength detector.

(24R,22E)-Des-A,B-8 β -(ben zoyloxy)ergost-22-ene(8). Benzoyl chloride (10.2 mL, 58.4 mmol) was added to an ice-cooled solution of (24R,22E)-des-A,B-ergost-22-en-8 β -ol²⁰ (8.13 g, 29.2 mmol) and DMAP (cat) in pyridine (45 mL). The resulting mixture was kept in the refrigerator for 14 h. Addition of ice gave a mixture that was extracted with EtOAc/hexanes (250 mL). The organic extracts were washed with HCl (5%, 100 mL), H₂O (100 mL), NH₄OH (5%, 100 mL), and H₂O (100 mL). Thesolution was dried, filtered, and concentrated to give a residue that was chromatographed on silica gel (3% EtOAc/hexanes) to give 10.87 g of 8 [95%, R_f 0.7 (10% EtOAc/hexanes), syrup]: ¹H NMR δ 8.10–7.40 (5 H, m, Bz), 5.40 (1 H, m, H-8), 5.18 (2 H, m, H-22 and H-23), 1.06 (3 H, a, CH₃-18), 1.03 (3 H, d, J = 6.6 Hz, CH₃-21 or CH₃-28), 0.91 (3 H, d, J = 6.8 Hz, 3 H, CH₃-21 or CH₃-28), 0.84 (3 H, d, J = 3.8 Hz, CH₃-26 or CH₃-27), 0.81 (3 H, d, J = 3.8 Hz,

⁽³³⁾ The high stereoselectivity observed can be explained by the S_N^{2-} type substitution of the stereoelectronically polarized bond hypothesized by Seebach. $^{17\mathrm{b}}$

⁽³⁴⁾ To the best of our knowledge no reactions of stannylacetylenes or other stannyl nucleophiles with this type of dioxanones have been reported.

⁽³⁵⁾ Rosen, T.; Taschner, M. J.; Thomas, J. A.; Heathcock, C. H. J. Org. Chem. 1985, 50, 1190.

⁽³⁶⁾ The use of $Li_2Cu_3Me_5$ prepared from Cu_2I_2 purified by crystallization from an aqueous solution of KI (Kauffman, G. B., and Teter, L. A. *Inorg. Synth.* **1963**, 7, 9) to carry out the S_N2' syn displacement of carbamate 6 increases the yield of the reaction product from $78\%^9$ to 96%.

⁽³⁷⁾ For general procedures, see: Pérez Sestelo, J.; Mascareñas, J. L.; Castedo, L.; Mouriño, A. J. Org. Chem., preceding paper in this issue.

CH₃-26 or CH₃-27); ¹³C NMR δ 166.3 (CO₂), 135.5 (CH), 132.6 (CH), 132.0 (CH), 131.0 (C), 129.5 (CH), 128.3 (CH), 72.1 (C-8), 56.3, 51.7, 42.7, 41.7, 39.8, 33.0, 30.5, 27.4, 22.6, 20.7, 19.8, 19.5, 17.9, 17.5, 13.6. Anal. Calcd for C₂₆H₃₆O₂: C, 81.61; H, 10.03. Found: C, 81.53; H, 10.13.

Des-*A*,*B***-8***β***-(benzoyloxy)-23,24-dinorcholan-22-al (9a).** A solution of 8 (1.72 g, 4.5 mmol) in MeOH (50 mL), CH_2Cl_2 (15 mL) and pyridine (1.5 mL) was placed in an ozonation vessel with a magnetic stirring bar. The solution was cooled to -78 °C while being purged with N₂. The N₂ flow was stopped, and a stream of ozone was passed until a gray-blue color appeared (25 min). The ozone flow was stopped, and the reaction mixture was purged with N₂ (-78 °C) until no ozone remained in solution (KI test). The resulting solution was concentrated. The residue was flash chromatographed (5% EtOAc/hexanes) to give aldehyde 9a⁹ [1.35 g, 95%, *R*_f 0.78 (20% EtOAc/hexanes)]: ¹H NMR & 9.58 (1 H, d, *J* = 3.2 Hz, H-22), 8.10-7.40 (5 H, m, Bz), 1.14 (3 H, d, *J* = 6.9 Hz, CH₃-21), 1.07 (s, CH₃-18).

General Procedure for the Preparation of Acetals 10a-g. A solution of aldehyde 9a (2.81 mmol) and the appropriate diol (3.11 mmol) in THF (30 mL) was treated at 0 °C with BF₃·OEt₂ (2.25 mmol, freshly distilled from CaH₂, under argon). The reaction mixture was stirred for 16 h at rt and quenched with MeOH (2 mL). The mixture was washed with saturated aqueous NaHCO₃ (100 mL) and extracted with EtOAc/hexanes (1:1, 3 × 50 mL). The combined organic extracts were dried, filtered, and concentrated. Flash chromatography of the residue (3% EtOAc/ hexane) gave the acetals 10a-g (85–97%).

(20.5)-Des-A,B-8 β -(benzoyloxy)-20-[(4'R,6'R)-4',6'-dimethyl-1',3'-dioxan-2'-yl]pregnane (10a) [1.09 g, 97%, R_f 0.37 (10% EtOAc/hexanes), syrup]: ¹H NMR δ 4.85 (1 H, d, J = 2.1 Hz, H-2'), 1.34 (3 H, d, J = 6.9 Hz, CH₃-C-6'), 1.20 (3 H, d, J = 6.1 Hz, CH₃-C-4'), 1.04 (3 H, d, J = 3.8 Hz, CH₃-21), 1.02 (3 H, s, CH₃-18); ¹³C NMR δ 166.4 (CO₂), 132.6 (CH), 130.9 (C), 129.5 (CH), 128.3 (CH), 94.8 (C-22), 72.0 (C-8), 67.6 (CH), 67.2 (CH), 52.0, 51.1, 41.8, 40.1, 39.7, 36.8, 30.6, 25.9, 22.6, 21.8, 17.9, 16.8, 13.3, 12.0; IR (CCl₄) 1730 (C=O, s) cm⁻¹. Anal. Calcd for C₂₅H₃₆O₄: 74.95: H, 9.06. Found: C, 75.16; H, 9.22.

(20*S*)-Des-*A*,*B*-8 β -(benzoyloxy)-20-(1',3'-dioxan-2'-yl)pregnane (10b) [286 mg, 95%, R_f 0.33 (10% EtOAc/hexanes), foam]: ¹H NMR δ 4.50 (1 H, d, J = 2.0 Hz, H-2'), 4.11 (2 H, ddd, J = 11.4, 5.0 and 1.2 Hz, H-4'eq and H-6'eq), 3.84–3.65 (2 H, m, H-4'ax and H-6'ax), 1.04 (3 H, d, J = 3.8 Hz, CH₃-21), 1.03 (3 H, s, CH₃-18); ¹³C NMR 166.4 (CO₂), 132.6 (CH), 130.8 (C), 129.5 (CH), 128.3 (CH), 103.5 (C-22), 71.9 (C-8), 66.9 (CH₂), 66.8 (CH₂), 51.8, 51.1, 41.7, 40.3, 39.6, 30.5, 26.1, 25.8, 22.5, 17.8, 13.2, 12.2; IR (KBr) 1715 (C=O, s) cm⁻¹.

(20S)-Des-A,B-8 β -(benzoyloxy)-20-[(4'S,6'S)-4',6'-dimethyl-1',3'-dioxan-2'-yl]pregnane (10c) [928 mg, 89%, R_f 0.8 (15% EtOAc/hexanes), crystallized from Et₂O/hexanes, mp 97-99 °C]: ¹H NMR δ 4.81 (1 H, d, J = 2.0 Hz, H-2'), 1.34 (3 H, d, J = 7.0 Hz, CH₃-C-6'), 1.18 (3 H, d, J = 6.1 Hz, CH₃-C-4'), 1.04 (3 H, s, CH₃-18), 1.01 (3 H, d, J = 3.8 Hz, CH₃-21); ¹³C NMR δ 166.4 (CO₂), 132.6 (CH), 130.8 (C), 129.4 (CH), 128.3 (CH), 95.2 (C-22), 72.0 (C-8), 67.7 (CH), 67.2 (CH), 51.9, 51.0, 41.7, 40.1, 39.7, 36.8, 30.6, 25.9, 22.6, 21.8, 17.9, 16.8, 13.3, 12.0; IR (CCl₄) 1715 (C==O, s) cm⁻¹. Anal. Calcd for C₂₅H₃₆O₄: C, 74.96; H, 9.06. Found: C, 75.03; H, 9.17.

(20*S*)-Des-*A*,*B*-8 β -(benzoyloxy)-20-[(4'*R*,5'*R*)-4',5'-dimethyl-1',3'-dioxalan-2'-yl]pregnane (10d) [286 mg, 95%, R_f 0.37 (10% EtOAc/hexanes), crystallized from MeOH, mp 76-78 °C]: ¹H NMR δ 5.07 (1 H, d, J = 1.7 Hz, H-2'), 1.29 (3 H, d, J = 6.6Hz, CH₃-C-4'), 1.22 (3 H, d, J = 6.8 Hz, CH₃-C-5'), 1.05 (3 H, s, CH₃-18), 0.98 (3 H, d, J = 6.6 Hz, CH₃-21); ¹³C NMR δ 166.4 (CO₂), 132.6 (CH), 130.9 (C), 129.5 (CH), 128.3 (CH), 104.5 (C-22), 79.3 (CH), 78.6 (CH), 71.9 (C-8), 52.3, 51.0, 42.0, 39.6, 39.3, 30.5, 26.2, 22.6, 17.9, 17.3, 16.4, 13.2, 11.6; IR (KBr) 1730 (C=O, s) cm⁻¹. Anal. Calcd for C₂₄H₃₄O₄: C, 74.58; H, 8.87. Found: C, 74.20; H, 9.18.

(20*S*)-Des-*A*,*B*-8 β -(benzoyloxy)-20-[(4'*S*,5'*S*)-4',5'-dimethyl-1',3'-dioxalan-2'-yl]pregnane (10e) [195 mg,82%, *R*_i0.8 (30% EtOAc/hexanes), oil]: ¹H NMR δ 5.07 (1 H, d, *J* = 2.0 Hz, H-2'), 1.27 (3 H, d, *J* = 5.7 Hz, CH₃-C-4' or CH₃-C-5'), 1.22 (3 H, d, *J* = 5.7 Hz, CH₃-C-4' or CH₃-C-5'), 1.05 (3 H, s, CH₃-18), 0.96 (3 H, d, *J* = 5.6 Hz, CH₃-21); ¹³C NMR δ 166.4 (CO₂), 132.6 (CH), 130.9 (C), 129.5 (CH), 128.3 (CH), 104.6 (C-22), 79.6 (CH), 78.4 (CH), 71.9 (C-8), 52.2, 50.9, 42.0, 39.6, 39.2, 30.4, 26.1, 22.6, 17.9, 17.2, 16.3, 13.1, 11.4; IR (film) 1715 (C=O, s) cm⁻¹.

(20*S*)-Des-*A*,*B*-8 β -(benzoyloxy)-20-[(2'*R*,4'*S*)-4'-methyl-1',3'-dioxan-2'-yl]pregnane (10f) [532 mg, 91%, *R*₁ 0.4 (10% EtOAc/hexanes), crystallized from EtOH, mp 94-96 °C]: ¹H NMR δ 4.48 (1 H, d, *J* = 2.2 Hz, H-2'), 1.20 (3 H, d, *J* = 6.1 Hz, CH₃-C-4'), 1.04 (3 H, s, CH₃-18), 1.02 (3 H, d, *J* = 6.6 Hz, CH₃-21); ¹³C NMR 166.3 (CO₂), 132.5 (CH), 130.8 (C), 129.4 (CH), 128.2 (CH), 103.0 (C-22), 72.5, 71.9 (C-8), 66.3, 51.7, 51.0, 41.6, 40.1, 39.5, 33.0, 30.4, 26.0, 22.5, 21.6, 17.8, 13.2, 12.4; (KBr) 1705 (C=O, s) cm⁻¹.

(20*S*)-Des-*A*,*B*-8 β -(benzoyloxy)-20-[(2'*S*,4'*R*)-4'-methyl-1',3'-dioxan-2'.yl]pregnane (10g) [512 mg, 85%, *R*_f 0.4 (10% EtOAc/hexanes), crystallized from MeOH, mp 104–106 °C]: ¹H NMR δ 4.51 (1 H, d, *J* = 1.9 Hz, H-2'), 1.22 (3 H, d, *J* = 6.2 Hz, CH₃-C-4'), 1.04 (3 H, d, *J* = 3.8 Hz, CH₃-21), 1.03 (3 H, s, CH₃-18); ¹³C NMR 166.5 (CO₂), 132.7 (CH), 130.9 (C), 129.6 (CH), 128.4 (CH), 103.0 (C-22), 72.5, 72.0 (C-8), 66.6, 52.1, 51.2, 41.8, 40.4, 39.7, 33.1, 30.6, 29.6, 26.2, 22.6, 21.7, 17.9, 13.3, 12.4; IR (CCl₄) 1720 (C=O, s) cm⁻¹. Anal. Calcd for C₂₄H₃₄O₄: C, 74.58; H, 8.87. Found: C, 74.32; H, 9.06.

(20R)-Des-A,B-8 β -(benzoyloxy)-23,24-dinorcholan-22-al (9b). A solution of 9a (350 mg, 1.1 mmol) in s-collidine (3 mL) was refluxed for 48 h. Concentration gave a residue that was dissolved in MeOH (10 mL). NaBH₄ (53 mg, 1.4 mmol) was added. The mixture was stirred for 15 min, quenched by addition of a few drops of water, and concentrated. The residue was dissolved in Et₂O (100 mL). The organic phase was washed with H_2O (3 × 50 mL), dried, filtered, and concentrated. The residue was flash chromatographed $(2 \times 30 \text{ cm}, 25\% \text{ EtOAc/hexanes})$ to give 83 mg of $18a^{11d}$ [24%, $R_f 0.18$ (25% EtOAc/hexanes)] and 218 mg of 18b [62%, R_f 0.20 (25% EtOAc/hexanes), colorless liquid]. 18b: ¹H NMR δ 3.76 (1 H, dd, J = 10.6 and 3.6 Hz, H-22), 3.49 (1 H, dd, J = 10.6 and 7.0 Hz, H-22), 1.07 (3 H, s, CH₃-18), 0.97 (3 H, d, J = 5.7 Hz, CH₃-21); ¹³C NMR δ 166.5 (CO₂), 132.7 (CH), 131.0 (C), 129.6 (CH), 128.4 (CH), 72.1 (C-8), 66.8 (C-22), 52.8, 51.6, 41.8, 39.4, 37.5, 30.6, 26.3, 22.5, 18.0, 16.4, 13.9; IR (neat) 3400 (OH, br), 1730 (C=O, s) cm⁻¹. PDC (690 mg, 1.83 mmol) was added to a solution of alcohol 18b (190 mg, 0.6 mmol) in CH₂Cl₂ (6 mL). The resulting suspension was stirred at rt overnight and then filtered through a path of Celite. The solution was concentrated to give a residue that the flash chromatographed (5% EtOAc/hexanes) to afford 172 mg of 9b $[91\%, R_f 0.78 (20\% \text{ EtOAc/hexanes})]: ^1H \text{ NMR } \delta 9.57 (1 \text{ H}, \text{d}, \text{d})$ J = 5.0 Hz, CHO), 1.06 (3 H, s, CH₃-18), 1.06 (3 H, d, J = 6.7 Hz, CH₃-21); ¹³C NMR δ 205.4 (CHO), 166.4 (CO₂), 132.8 (CH), 130.8 (C), 129.6 (CH), 128.4 (CH), 71.6 (C-8), 52.2, 51.2, 48.4, 41.6, 38.7, 30.5, 25.3, 22.1, 17.7, 14.5, 13.3; IR (neat) 1720 (C=O, s) cm⁻¹.

(20*R*)-Des-*A*,*B*-8 β -(ben zoyioxy)-20-[(4'*R*,6'*R*)-4'-methyl-1',3'-dioxan-2'-yl]pregnane (11). This compound was prepared as above [186 mg, 97%, R_f 0.40 (10% EtOAc/hexanes), syrup]: ¹H NMR δ 4.98 (1 H, d, J = 2.5 Hz, H-2'), 1.37 (3 H, d, J = 6.9 Hz, CH₃-C-6'), 1.18 (3 H, d, J = 6.1 Hz, CH₃-C-4'), 1.06 (3 H, s, CH₃-18), 0.92 (3 H, d, J = 6.4 Hz, CH₃-21); ¹³C NMR δ 166.4 (CO₂), 132.6 (CH), 131.0 (C), 129.5 (CH), 128.3 (CH), 94.3 (C-22), 72.1 (C-8), 67.7 (CH), 66.9 (CH), 51.4, 51.2, 41.7, 39.0, 36.9, 30.6, 29.6, 25.7, 22.5, 21.8, 18.1, 17.4, 14.2, 11.6; IR (CCl₄) 1715 (C=-0, s) cm⁻¹.

Trimethylsilyl (R)-3-[(Trimethylsilyl)oxy]butyrate. Dry hexamethyldisilazane (HMDS) (1.5 mL, 7.2 mmol, freshly distilled from CaH₂) was added dropwise to a solution of (R)-3-hydroxybutyric acid (680 mg, 6.53 mmol) in CH₂Cl₂ (30 mL) with formation of a white precipitate. The slurry was stirred overnight. Concentration gave a liquid that was bulb-to-bulb distilled (at 105-100 °C, 0.1 mmHg) to provide trimethylsilyl (R)-3-[(trimethylsilyl)oxy]butyrate^{23b} (1.45 g, 89%, colorless liquid): ¹H NMR δ 4.29 (1 H, m, H-3), 2.48 (1 H, ABd, J = 15.2 and 7.6 Hz, H-2), 2.38 (1 H, ABd, J = 15.2, 5.6 Hz, H-2), 1.20 (3 H, d, J = 6.1 Hz, CH₃-4), 0.29 (9 H, s, TMS), 0.14 (9 H, s, TMS).

(20S)-Des-A,B-8 β -(benzoyloxy)-20-[(2'R,6'R)-6'-methyl-4'oxo-1',3'-dioxan-2'-yl]pregnane (10h). 2,6-Di-tert-butylpyridine (8 μ L) was added to a cooled (-78 °C) solution of trimethylsilyl (R)-3-[(trimethylsilyl)oxy]butyrate (520 g, 2.1 mmol) and 9a (570 g, 1.82 mmol) in CH₂Cl₂ (6 mL). After 5 min, TMSTf (15 μ L, 0.08 mmol) was added and the solution was stirred for 2 h. The reaction was quenched by addition of Et₃N (20 μ L) followed by MeOH (50 μ L). The mixture was stirred at -78 °C for 5 min and then allowed to warm to rt. Concentration gave an oil that was flash chromatographed (20% EtOAc/hexanes) to give a 20:1 mixture of cis and trans dioxanone isomers. Pure 10h was obtained by crystallization from Et₂O [692 mg, 95%, R_1 0.52 (40% EtOAc/hexanes), mp 133-135 °C]: ¹H NMR δ 5.32 (1 H, d, J = 1.6 Hz, H-2'), 2.67 (1 H, ABd, J = 17.7 and 4.1 Hz, H-5'), 2.40 (1 H, ABd, J = 17.7 and 10.9 Hz, H-5'), 1.34 (3 H, d, J =6.1 Hz, CH₃-C-6'), 1.06 (3 H, d, J = 6.7 Hz, CH₃-21), 1.05 (3 H, s, CH₃-18); ¹³C NMR δ 168.1 (CO₂), 166.4 (CO₂), 132.7 (CH), 130.9 (C), 129.5 (CH), 128.3 (CH), 104.6 (C-22), 71.8 (C-8), 70.2 (CH), 51.0, 50.7, 41.9, 40.1, 39.6, 37.8, 30.4, 26.0, 22.5, 21.0, 17.8, 13.3, 11.5; IR (KBr) 1745 (C=O, s), 1725 (C=O, s) cm⁻¹.

3-Methyl-3-[(trimethylsilyl)oxy]-1-butyne. TMSCl (6.5 mL, 50 mmol) was added to a solution of 3-butyn-2-methyl-3-ol (4.25 mL, 50 mmol), imidazole (10.34 g, 5 mmol) and Et₃N (10.5 mL, 75 mmol) in Et₂O (100 mL). The reaction mixture was stirred for 1 h, quenched with ice-water, and extracted with Et₂O (2×50 mL). The organic phase was dried, filtered, and distilled to afford HC=CCMe₂OTMS³⁸ (5.11 g, 69%, bp 115–116 °C).

Bu₃SnC=CC(CH₃)₂OSiMe₃ (12b). A solution of *n*-BuLi in hexane (5.9 mL, 2.13 M) was added dropwise to a cooled (-78 °C) solution of HC=CC(CH₃)₂OTMS (1.8 g, 12.6 mmol) in THF (15 mL). The mixture was stirred for 5 min, allowed to come to rt (30 min), and cooled again to -78 °C. Bu₃SnCl (3.4 mL, 12.6 mmol) was slowly added. The mixture was stirred at rt for 12 h and quenched with a few drops of water. Concentration gave a residue that was dissolved in EtOAc/hexanes (100 mL), washed with saturated aqueous NaHCO₃ (50 mL) and brine (50 mL), dried, and filtered. Concentration afforded a residue that was bulb-to-bulb distilled to give 4.76 g of 12b [87%, at 85-90 °C (0.01 mmHg), colorless liquid]; ¹H NMR δ 1.48 (6 H, s, CH₃), 0.90 (9 H, t, J = 7.4 Hz, CH₃(CH₂)₃Sn), 0.19 (9 H, s, Me₃Si-); ¹³C NMR 115.8, 85.1, 66.8, 33.4, 28.8, 26.8, 13.5, 10.8, 1.9.

Reaction of Acetals 10a-g and 11 with Stannylacetylene 12b. General Procedure. A solution of TiCl₄ (280 μ L, 2.56 mmol, freshly distilled from Cu powder under argon) in CH₂Cl₂ (2.5 mL) was added to a cooled (-78 °C) solution of acetals **11a-g** (1.60 mmol) and **12b** (3.2 mmol, freshly distilled) in CH₂Cl₂ (20 mL). After being stirred for 5 min the reaction was quenched with MeOH (2 mL). The organic phase was washed with HCl (5%, 75 mL), and the aqueous phase was extracted with CH₂Cl₂ (3 × 50 mL). The combined organic extracts were dried, filtered, and concentrated. The residue was flash chromatographed (35-40% EtOAc/hexanes) to give the desired acetal (85-95%).

(22*R*)-Des-*A*,*B*-8 β -(benzoyloxy)-22-[(1'*R*,3'*R*)-3'-hydroxy-1'-methylbuty]oxy]-23-cholestyn-25-ol (13a) [736 mg, 95%, *R*₁ 0.4 (40% EtOAc/hexanes)]: ¹H NMR δ 4.19 (1 H, d, *J* = 2.0 Hz, H-22), 1.52 (6 H, s, CH₃-26 and CH₃-27), 1.33 (3 H, d, *J* = 5.4 Hz, CH₃-4'), 1.19 (3 H, d, *J* = 6.2 Hz, CH₃-C-1'), 1.10 (3 H, d, *J* = 6.6 Hz, CH₃-21), 1.04 (3 H, s, CH₃-18); ¹³C NMR δ 166.3 (CO₂), 132.6 (CH), 130.7 (C), 129.4 (CH), 128.2 (CH), 90.1 (C), 81.9 (C), 74.0 (CH), 71.6 (C-8), 64.6 (C-25), 64.2 (CH), 52.0, 51.2, 44.3, 42.0, 41.6, 39.4, 31.2, 30.2, 26.5, 23.5, 22.4, 20.2, 17.7, 13.9, 13.2; IR (neat) 3440 (OH, br), 1715 (C=O) cm⁻¹.

(22R and 22S)-Des-A,B-8 β -(benzoyloxy)-22-[(3'-hydroxypropy))oxy]-23-cholestyn-25-ol (13b and 14b) [3:2 mixture (¹H NMR ratio) of 13b and 14b [296 mg, 89%, R_{f} 0.38 (45% EtOAc/hexanes), foam]]: ¹H NMR δ 4.18 (1 H, J = 1.9 Hz, H-22 of 13b), 4.09 (1 H, d, J = 3.6 Hz, H-22 of 14b), 1.54 (6 H, s, CH₃-26 and CH₃-27), 1.10 (3 H, d, J = 6.6 Hz, CH₃-21 of 13b), 1.04 (3 H, s, CH₃-18 of 14b), 1.04 (3 H, s, CH₃-18 of 13b), 1.10 (3 H, d, J = 6.6 Hz, CH₃-21 of 14b); 1³C NMR δ 166.5 (CO₂), 132.7 (CH), 130.9 (C), 129.5 (CH), 128.4 (CH), 92.0 (C) (14b), 91.2 (C) (13b), 80.8 (C) (13b), 78.6 (C) (14b), 73.3 (14b), 73.1 (13b), 72.1 (13b), 72.0 (C-8), 68.4, 67.5, 65.0 (C-25), 61.8, 61.4, 53.0, 52.3, 51.4, 51.3, 42.0, 41.7, 41.1, 40.4, 39.8, 39.6, 32.0, 31.9, 31.4, 30.4, 27.6, 26.4, 22.5, 18.9, 17.9, 14.0, 13.6, 13.5, 13.4; IR (neat) 3390 (OH, br), 1715 (C=O) cm⁻¹. Anal. Calcd for C₂₄H₃₂O₆: C, 73.65; H, 8.83. Found: C, 73.66; H, 8.56.

(22R and 22S)-Des-A,B-8 β -(benzoyloxy)-22-[(1'S,3'S)-3'-hydroxy-1'-methylbuty]oxy]-23-cholestyn-25-ol (13c and 14c) [1:12 mixture (¹H NMR ratio) of 13c and 14c [257, 94%,

 R_f 0.4 (40% EtOAc/hexanes), syrup]]: ¹H NMR δ 4.23 (1 H, J = 1.9 Hz, H-22 of 13c), 4.20 (1 H, d, J = 3.5 Hz, H-22 of 14c), 1.54 (6 H, s, CH₃-26 and CH₃-27), 1.28 (3 H, d, J = 6.4 Hz, CH₃-C-1' or CH₃-4'), 1.18 (3 H, d, J = 6.2 Hz, CH₃-C-1' or CH₃-4'), 1.07 (3 H, s, CH₃-18), 1.05 (3 H, d, J = 6.6 Hz, CH₃-21); ¹³C NMR δ 166.6 (CO₂), 132.8 (CH), 130.9 (C), 129.6 (CH), 128.4 (CH), 91.1 (C), 79.6 (C), 72.9 (CH), 72.0 (C-8), 71.6 (CH), 65.2 (C-25), 64.6, 53.0, 51.4, 44.0, 42.0, 40.8, 39.9, 31.5, 30.5, 26.6, 23.7, 22.7, 20.4, 17.9, 13.8, 13.6; IR (BrK) 3450 (OH, br), 1715 (C=O) cm⁻¹.

(22R and 22S)-Des-A,B-8 β -(ben zoyloxy)-22-[[(1'R,2'R)-2'-hydroxy-1'-methylpropy]]oxy]-23-cholestyn-25-ol (13d and 14d) [5:1 mixture (¹H NMR ratio) of 13d and 14d [258 mg, 97%, R_f 0.18 (30% EtOAc/hexanes), foam]]: ¹H NMR δ 8.10–7.40 (5 H, m, Bz), 4.20 (1 H, d, J = 1.9 Hz, H-22 of 13d), 4.19 (1 H, J = 3.5 Hz, H-22 of 14d), 3.61 (1 H, m, H-1'), 3.32 (1 H, m, J = 6.1 Hz, H-2'), 1.54 (6 H, s, CH₃-26 and CH₃-27), 1.25 (3 H, d, J = 6.2 Hz, CH₃-C-1'), 1.15 (3 H, d, J = 6.3 Hz, CH₃-3'), 1.10 (3 H, d, J = 6.6 Hz, CH₃-21), 1.06 (3 H, s, CH₃-18); ¹³C NMR δ 166.5 (CO₂), 132.7 (CH), 130.9 (C), 129.6 (CH), 128.4 (CH), 90.1 (C), 82.5 (C), 81.4 (31.3, 30.4, 26.8, 22.6, 18.5, 17.9, 16.8, 14.0, 13.3; IR (neat) 3410 (OH, br), 1720 (C=O) cm⁻¹.

(22R and 22S)-Des-A,B-8 β -(ben zoyloxy)-22-[[(1'S,2'S)-2'-hydroxy-1'-methylpropy]]oxy]-23-cholestyn-25-ol (13e and 14e) [1:9 mixture (¹H NMR ratio) of 13e and 14e [87 mg, 93%, R_f 0.18 (30% EtOAc/hexanes]]: ¹H NMR δ 4.24 (1 H, J = 2.0 Hz, H-22 of 13e), 4.16 (1 H, d, J = 3.5 Hz, H-22 of 14e), 1.55 (6 H, s, CH₃-26 and CH₃-27), 1.21 (3 H, d, J = 6.2 Hz, CH₃-3' or CH₃-C-1'), 1.15 (3 H, d, J = 6.3 Hz, CH₃-C-1' or CH₃-3'), 1.08 (s, 3 H, CH₃-18), 1.06 (d, J = 6.2 Hz, 3 H, CH₃-21); ¹³C NMR δ 166.5 (CO₂), 132.7 (CH), 130.8 (C), 129.5 (CH), 128.4 (CH), 91.1 (C), 80.3 (C), 79.6 (C), 72.5 (CH), 72.0 (C-8), 71.0 (CH), 65.0 (C-25), 52.8, 51.3, 42.0, 39.8, 31.4, 30.4, 26.5, 22.6, 18.5, 17.9, 16.8, 13.7, 13.5; IR (neat) 3440 (OH, br), 1715 (C=O) cm⁻¹.

(22R)-Des-A,B-8\$-(benzoyloxy)-22-[[(1'S)-3'-hydroxy-1'methylpropylloxyl-23-cholestyn-25-ol (13f) and (22S)-Des-A,B-8\$-(benzoyloxy)-22-[[(1'S)-3'-hydroxy-1'-methylpropyl]oxy]-23-cholestyn-25-ol (14f) [13f [39 mg, 25%, Rf 0.22 (40% EtOAc/hexanes)] and its C(22) epimer 14f [100 mg, 64%, R_f 0.25 (40% EtOAc/hexanes)]]. 13f: ¹H NMR δ 4.24 (1 H, d, J = 2.0Hz, H-22), 1.54 (6 H, s, CH₃-26 and CH₃-27), 1.14-1.12 (6 H, m, CH₃-C-1' and CH₃-21), 1.04 (3 H, s, CH₃-18); ¹³C NMR δ 166.6 (CO₂), 132.7 (CH), 130.9 (C), 129.6 (CH), 128.4 (CH), 91.1 (C), 81.5 (C), 72.1, 72.0, 69.6, 60.8, 51.8, 51.5, 41.7, 41.5, 39.6, 39.1, 31.4, 31.3, 30.5, 26.3, 22.6, 19.3, 17.9, 13.9, 13.4; IR (KBr) 3400 (OH, br), 1715 (C=O, s) cm⁻¹. 14f: ¹H NMR δ 4.18 (1 H, d, J = 4.5 Hz, H-22), 1.54 (6 H, s, CH₃-26 and CH₃-27), 1.28 (3 H, d, J = 6.2 Hz, CH₃-C-1'), 1.08 (3 H, s, CH₃-18), 1.06 (3 H, d, J =6.4 Hz, CH₃-21); ¹³C NMR δ 166.5 (CO₂), 132.7 (CH), 130.8 (C), 129.5 (CH), 128.4 (CH), 91.1 (C), 79.5 (C), 73.7, 72.0 (C-8), 71.3, 65.0 (C-25), 60.2, 52.9, 51.3, 41.9, 40.7, 39.8, 38.4, 31.4, 30.4, 26.5, 22.6, 20.5, 17.8, 13.7, 13.5; IR (KBr) 3400 (OH, br), 1715 (C=O, s) cm⁻¹.

(22*R*)-Des-*A*,*B*-8 β -(ben zoyloxy)-22-[[(1'*R*)-3'-hydroxy-1'methylpropyl]oxy]-23-cholestyn-25-ol (13g) and (22*R*)-des-*A*,*B*-8 β -(benzoyloxy)-22-[[(3'*R*)-3'-hydroxy-1'-butyl]oxy]-23cholestyn-25-ol (16) [4:1 mixture (¹H NMR ratio) of the 13g and 16 [82%, *R*_f 0.2 (40% EtOAc/hexanes), foam]]: ¹H NMR δ 4.18 (1 H, d, *J* = 1.9 Hz, H-22 of 13g), 4.09 (1 H, d, *J* = 2.1 Hz, H-22 of 16), 1.55 (6 H, s, CH₃-26 and CH₃-27 of 16), 1.52 (6 H, s, CH₃-26 and CH₃-27 of 13g), 1.33 (3 H, d, *J* = 5.4 Hz, CH₃-1'), 1.11 (3 H, d, *J* = 6.6 Hz, CH₃-21), 1.05 (3 H, s, CH₃-18 of 13g), 1.04 (3 H, s, CH₃-18 of 16); ¹³C NMR δ 166.5 (CO₂), 132.7 (CH), 130.9 (C), 129.6 (CH), 128.4 (CH), 91.2 (C), 89.8 (C), 82.5 (C), 80.3 (C), 74.8, 73.1, 72.1 (C-8), 71.4, 68.6, 68.3, 65.0 (C-25), 60.0, 52.1, 51.5, 51.4, 42.3, 41.8, 40.6, 39.7, 38.7, 37.9, 31.4, 30.4, 29.6, 26.8, 26.5, 22.9, 22.6, 20.6, 17.9, 14.0, 13.3; IR (neat) 3400 (OH, br), 1715 (C=O, s) cm⁻¹.

(20*R*,22*R* and 20*R*,22*S*)-Des-*A*,*B*-8 β -(benzoyloxy)-22-[[(1'*R*,3'*R*)-3'-hydroxy-1'-methylbutyl]oxy]-23-cholestyn-25ol (15a and 15b) [8:1 mixture (¹H NMR ratio) of 15a and 15b [139 mg, 72%, *R*_f 0.30 (45% EtOAc/hexanes), foam]]: ¹H NMR δ 4.44 (1 H, d, *J* = 3.8 Hz, H-22 for 15b), 4.44 (1 H, d, *J* = 2.9 Hz, H-22 for 15a), 1.54 (6 H, s, CH₃-26 and CH₃-27 of 15a), 1.53 (6 H, s, CH₃-26 and CH₃-27 of 15b), 1.30 (3 H, d, *J* = 6.3 Hz, CH₃-4'), 1.20 (3 H, d, *J* = 6.2 Hz, CH₃-C-1'), 1.09 (3 H, s, CH₃-18),

⁽³⁸⁾ Visser, R. G.; Bos, H. J. T.; Brandsma, L. Red. Trav. Chim. Pays-Bas. 1981, 100, 34.

0.97 (3 H, d, J = 6.6 Hz, CH₃-21); ¹³C NMR δ 166.5 (CO₂), 132.8 (CH), 130.9 (C), 129.6 (CH), 128.4 (CH), 91.6 (C), 79.9 (C), 73.0 (CH), 72.0 (C-8), 71.0 (CH), 65.1 (C-25), 64.5, 52.5, 51.5, 44.0, 41.7, 39.7, 39.8, 31.5, 30.5, 26.2, 23.7, 22.4, 20.4, 18.0, 13.9, 13.4; IR (neat) 3420 (OH, br), 1715 (C=O, s) cm⁻¹.

(22R)-Des-A,B-8\$-(benzoyloxy)-22-[[(1'R)-2'-carboxy-1'methylethyl]oxy]-23-cholestyn-25-ol (13h). A solution of TiCl₄ (70 μ L, 0.65 mmol, freshly distilled from Cu powder under argon) in CH_2Cl_2 (200 µL) was added to a cooled solution (-78 °C) of acetal 10h (240 mg, 0.6 mmol) and 12b [543 mg, 1.22 mmol, freshly bulb-to-bulb distilled (at 110 °C, 0.1 mmHg)] in CH_2Cl_2 (12 mL). An additional amount of TiCl₄ (25 μ L, 0.13 mmol) in CH_2Cl_2 (75 µL) was added after 1 h. The reaction mixture was stirred for 12 h, quenched by addition of MeOH (2 mL), and washed with HCl (5%, 75 mL). The aqueous phase was extracted with CH_2Cl_2 (3 × 50 mL), and the combined organic extracts were dried, filtered, and concentrated. The residue was flash chromatographed (45% EtOAc/hexanes) to give 254 mg of 13h [87%, $R_f 0.30$ (50% EtOAc/hexanes), foam]: ¹H NMR δ 4.21 (1 H, d, J = 1.5 Hz, H-22), 1.53 (6 H, s, CH₃-26 and CH₃-27), 1.31 (3 H, d, J = 6.2 Hz, CH₃-C-1'), 1.07 (3 H, d, J = 6.3 Hz, CH3-21), 1.01 (3 H, s, CH3-18); ¹³C NMR & 177.2 (CO2H). 166.7 (CO₂), 132.8 (CH), 130.8 (C), 129.6 (CH), 128.4 (CH), 90.2 (C), 82.2 (C), 72.3 (CH), 71.8 (CH), 71.4 (CH), 65.2 (C-25), 51.7, 51.4, 42.2, 41.7, 39.6, 31.3, 30.5, 26.5, 22.6, 21.1, 19.0, 17.9, 13.9, 13.3; IR (neat) 3420 (OH, br), 1715 (C=O, s) cm⁻¹. Anal. Calcd for C₂₉H₄₀O₆: C, 71.83; H, 8.31. Found: C, 71.95; H, 8.76.

Removal of the Chiral Auxiliary and Determination of the R,S Configuration. Preparation of (22S and/or 22R)-Des-A,B-8 β -(benzoyloxy)-22,25-dihydroxycholest-23-yne (17a and/or 17b). General Procedure. PCC (6.25 mmol) was added to a solution of the diol or mixture of diols (605 mg, 1.25 mmol) in CH₂Cl₂ (25 mL). The resulting brown suspension was stirred at rt for 12 h and then filtered through a short column of Celite using EtOAc as eluent (4 × 10 mL). Concentration gave a residue that was directly used in the next step.

Removal of the Chiral Auxiliary. Methoda. A suspension of the above crude mixture (1 mmol) and K₂CO₃ (6 mmol) in MeOH (10 mL) was stirred at rt for 3 h. Et₂O was added and the mixture washed with H₂O (75 mL) and HCl (5%, 50 mL), dried, filtered, and concentrated. The residue was flash chromatographed (38% EtOAc/hexanes) to give 17a and/or 17b. 17a: ¹H NMR δ 4.51 (1 H, d, J = 2.0 Hz, H-22), 1.54 (6 H, s, CH₃-26 and CH₃-27), 1.13 (3 H, d, J = 6.5 Hz, CH₃-21), 1.06 (3 H, s, CH3-18); ¹³C NMR & 166.5 (CO2), 132.7 (CH), 130.9 (C), 129.6 (CH), 128.4 (CH), 90.0 (C), 83.0 (C), 72.1 (C-8), 65.2 (C-25), 52.0, 51.5, 41.2, 39.7, 31.4, 30.5, 26.4, 22.5, 17.9, 13.4, 13.0; IR (neat) 3400 (OH, br), 1715 (C=O, s) cm⁻¹. 17b: ¹H NMR δ 4.48 (1 H, d, J = 3.8 Hz, H-22), 1.55 (6 H, s, CH₃-26 and CH₃-27), 1.08 (3 H, s, CH₃-18), 1.07 (3 H, d, J = 6.5 Hz, CH₃-21); ¹³C NMR δ 166.6 (CO2), 132.7 (CH), 130.9 (C), 129.6 (CH), 128.4 (CH), 91.1 (C), 80.6 (C), 72.0 (C-8), 65.3 (CH), 65.2 (C-25), 53.4, 51.3, 42.2, 41.8, 40.0, 31.5, 30.5, 26.3, 22.6, 17.9, 13.7, 12.7; IR (neat) 3400 (OH, br), 1720 (C=O, s) cm⁻¹. From 13a: 17a:17b (87:1, HPLC, 304 mg, 96% two steps). From 13b-14b: 17a:17b [3.2 (¹H NMR), 121 mg, 84% two steps]. From 13c-14c: 17a:17b [1:12 (1H NMR), 65 mg, 87% two steps]. From 14f:17b (46 mg, 77% two steps). From 13g:17a (51 mg, 58% two steps). From 16:17a (51 mg, 17% two steps).

Method b. A solution of 1,2-diiodoethane (2 mmol) in THF (1 mL) was added to a mixture of Sm powder (2 mmol) in THF (1 mL) at rt. The resulting olive-green slurry was stirred at rt for 1 h. The dark blue mixture of SmI_2 was cooled to -78 °C and treated with a solution of the crude mixture of ketones (1 mmol) in MeOH/THF (1:2, 3 mL). The brown mixture was stirred for 10 min at -78 °C and poured into saturated aqueous K_2CO_3 . The aqueous phase was extracted with Et_2O (3 × 10 mL). The combined extracts were dried, filtered, and concentrated. The residue was flash chromatographed (35% EtOAc/hexanes) to give a mixture of diols 17a and 17b. From 13d-14d: 17a:17b [5:1 (¹H NMR), 114 mg, 79% two steps]. From 13e:14e: 17a:

(22*R*)-Des-A,B-8 β -(benzoyloxy)-25-[(methoxymethyl)oxy]-22-[[(1'*R*)-3'-oxo-3'-[(methoxymethyl)oxy]-1'-methylpropyl]oxy]cholest-23-yne (19). ClMOM (325 μ L, 4.39 mmol) was added to a cooled (0 °C) solution of 13h (430 mg, 0.89 mmol), DMAP (cat.), and i-Pr₂NEt (940 μ L, 5.25 mmol) in CH₂Cl₂ (15 mL). The reaction mixture was stirred for 18 h and quenched with H₂O. The resulting mixture was extracted with Et₂O (2 \times 50 mL). The organic phase was washed with HCl (5%, 50 mL) and a saturated aqueous solution of NaHCO₃ (40 mL), dried, and filtered. Concentration afforded a residue that was flash chromatographed (10% EtOAc/hexanes) to give 468 mg of 19 [92%, R, 0.63 (40% EtOAc/hexanes), syrup]: 1H NMR 8 4.22 (1 H, d, J = 2.0 Hz, H-22), 4.09 (1 H, q, J = 6.1 Hz, H-1'), 1.52 (6 H, s, CH₃-26 and CH₃-27), 1.29 (3 H, d, J = 6.2 Hz, CH₃-C-1'), $1.08 (3 \text{ H}, \text{d}, J = 6.4 \text{ Hz}, \text{CH}_3-21), 1.03 (3 \text{ H}, \text{s}, \text{CH}_3-18); {}^{13}\text{C} \text{ NMR}$ δ 171.0 (CO₂), 166.5 (CO₂), 132.7 (CH), 131.0 (C), 129.6 (CH), 128.4 (CH), 93.2 (CH₂), 90.4 (CH₂), 87.2 (C), 84.9 (C), 72.1 (C-8), 71.5 (CH) 71.0 (C-25), 57.6, 55.4, 51.8, 51.5, 42.1, 41.7 (CH₂), 39.7 (CH2), 30.5 (CH2), 30.1, 26.5 (CH2), 22.7 (CH2), 21.1, 17.9 (CH2), 14.0, 13.4; IR (KBr) 1740 (C=O, s), 1715 (C=O, s) cm⁻¹. Anal. Calcd for C33H48O8: C, 69.20; H, 8.45. Found: C, 69.01; H, 8.38.

(22*R*)-Des-*A*,*B*-8 β -(ben zoyloxy)-25-[(methoxymethyl)oxy]cholest-23-yn-22-ol (7). *i*-Pr₂NH (330 μ L, 1.56 mmol) and THF (2 mL) were successively added dropwise to a cooled (-78 °C) solution of *n*-BuLi in hexane (4.2 mL, 2.3 M). The mixture was stirred at -78 °C for 10 min and at rt for 20 min and then cooled to -78 °C and added dropwise to a solution of 19 (450 mg, 0.78 mmol) in THF (5 mL) at the same temperature. The mixture was stirred for 30 min and warmed to rt overnight. The organic phases were washed with saturated aqueous NaHCO₃ (50 mL), dried, and concentrated. Flash chromatography of the residue (10% EtOAc/hexanes) gave 7° [314 mg, 91%, 22*R*:22*S* isomers (45:1, ratio determined by HPLC), syrup]: ¹H NMR δ 4.50 (1 H, d, *J* = 2.0 Hz, H-22), 1.52 (6 H, s, CH₃-26 and CH₃-27), 1.12 (3 H, d, *J* = 6.5 Hz, CH₃-21), 1.06 (3 H, s, CH₃-18).

(22*E*,24*S*)-Des-*A*,*B*-25-[(methoxymethyl)oxy]-8,22-ergostadien-8-yl Trifluoromethanesulfonate (5). Compound 5 was prepared from 20³⁹ following a general procedure³⁷ [89%, R_f 0.5 (7% EtOAc/hexanes), colorless oil]: ¹H NMR δ 5.57 (1 H, dd, J = 6.8, 3.5 Hz, H-9), 5.32 (2 H, AB q, J = 14.8 Hz, $\Delta \gamma$ = 28 Hz, H-22 and H-23), 1.16 (3 H, s, CH₃-26 or CH₃-27), 1.13 (3 H, s, CH₃-26 or CH₃-27), 1.03 (3 H, d, J = 6.6 Hz, CH₃-21), 0.99 (3 H, d, J = 6.7 Hz, CH₃-28), 0.77 (3 H, s, CH₃-18); ¹³C NMR δ 149.9 (C-8), 136.5 (CH), 130.4 (CH), 116.0 (C-9), 91.0 (CH₂), 78.1, 55.09, 54.1, 50.2, 46.6, 45.1, 40.2, 34.7, 28.4, 24.6, 23.8, 23.1, 21.4, 20.6, 15.1, 11.5.

 1α -[(*tert*-Butyldimethylsily])oxy]-6,7-dihydro-25-[(methoxymethyl)oxy]previtamin D₂ *tert*-Butyldimethylsilyl Ether (3). Compound 3 was prepared by palladium-catalyzed coupling between 5 and 4 following the general procedure³⁷ [94%, oil that decomposed rapidly even at -10 °C but was stable in solution, R_f 0.45 (5% EtOAc/hexanes)]: ¹H NMR δ 5.97 (1 H, br d, J =3.4 Hz, H-9), 5.32 (2 H, ABq, J = 14.8 Hz, $\Delta \gamma =$ 28 Hz, H-22 and H-23), 4.19 (1 H, m, H-1), 4.09 (1 H, m, H-3), 1.89 (3 H, br s, CH₃-19), 1.18 (3 H, s, CH₃-26 or CH₃-27), 1.14 (3 H, s, CH₃-26 or CH₃-27), 1.02 (3 H, d, J = 6.6 Hz, CH₃-21), 0.99 (3 H, d, J =6.7 Hz, CH₃-28).

1α-[(tert-Butyldimethylsily])oxy]-25-[(methoxymethyl)oxy]previtamin D₂ tert-Butyldimethylsilyl Ether (21). Compound 21 was prepared from 3 following the general procedure for hydrogenation with Lindlar catalyst³⁷ [R_1 0.59 (5% EtOAc/hexanes)], which was used directly in the next step: ¹H NMR δ 5.87 and 5.74 (2 H, AB, J = 12.3 Hz, H-6 and H-7), 5.55 (1 H, br s, H-9), 5.32 (2 H, ABq, J = 14.8 Hz, $\Delta\gamma = 28$ Hz, H-22 and H-23), 4.19 (2 H, br m, H-1 and H-3), 1.89 (3 H, br s, CH₃-19), 1.18 (3 H, s, CH₃-26), 1.14 (3 H, s, CH₃-27), 1.02 (3 H, d, J = 6.6Hz, CH₃-21), 0.99 (3 H, d, J = 6.7 Hz, CH₃-28); UV (Et₂O) λ_{max} 259 nm (ε 8600), λ_{min} 232 nm.

 1α -[(tert-Butyldimethylsilyl)oxy]-25-[(methoxymethyl)oxy]vitamin D₂ tert-Butyldimethylsilyl Ether (22). Compound 22 was prepared from 21 following the general procedure for the isomerization of previtamins D to vitamins D.³⁷ [Mixture of 22 and 21 (88:12 ¹H NMR ratio), 92%, R_{f} 0.59 (5% EtOAc/hexanes)]: ¹H NMR δ 6.24 and 6.01 (2 H, AB, J = 12.3 Hz, H-6 and H-7), 5.55 (1 H, br s, H-9), 5.27 (1 H, m, H-22 and H-23), 5.17 (1 H, br s, E-H-19), 4.86 (1 H, br s, Z-H-19), 4.19 (1 H, m, H-3), 1.17 (3 H, s, CH₃-26), 1.13 (3 H, s, CH₃-27), 1.01 (3

⁽³⁹⁾ For transformation of the alcohol 7 into the ketone 20 see ref 9.

H, d, J = 6.6 Hz, CH₃·21), 0.99 (3 H, d, J = 6.7 Hz, CH₃·28); ¹³C NMR δ 148.5, 141.0, 137.4, 135.1, 129.7, 123.2, 118.0, 111.2, 90.9, 78.2, 72.0, 67.6, 56.4, 55.1, 46.6, 46.0, 45.7, 44.8, 40.5, 28.8, 27.8, 25.8, 24.7, 23.4, 23.0, 22.6, 22.1, 20.8, 18.2, 15.1, 12.2, -4.3, -4.7, -4.9, -5.2; UV (Et₂O) λ_{max} 264 nm (ϵ 12 950), λ_{min} 228 nm.

1 α ,25-Dihydroxyvitamin D₂ (2b). A solution of 22 (50 mg, 0.071 mmol) in deoxygenated MeOH (5 mL) was stirred with ion-exchange resin (AG 50W-X4, 700 mg, prewashed with MeOH) at rt for 48 h in the dark. Filtration and concentration gave a residue that was flash chromatographed (50% EtOAc/hexanes) to afford 25 mg of pure 1 α ,25-dihydroxyvitamin D₂ [82%, crystallized from Et₂O, mp 159–161 °C (lit.^{11a} mp 159–161 °C)]: ¹H NMR δ 6.38 and 6.01 (2 H, AB, J = 11.1 Hz, H-6 and H-7), 5.32 (2 H, ABq, J = 14.8 Hz, $\Delta\gamma$ = 28 Hz, H-22 and H-23), 5.32 (br s, 1 H, E-H-19), 5.00 (1 H, br s, Z-H-19), 4.45 (m, 1 H, H-1), 4.26 (1 H, m, H-3), 1.17 (3 H, s, CH₃-26), 1.13 (3 H, s, CH₃-27), 1.03 (3 H, d, J = 6.6 Hz, CH₃-21), 0.98 (3 H, d, J = 6.9 Hz, CH₃-28), 0.55 (s, 3 H, CH₃-18); UV (Et₂O) λ_{max} 264 nm (ϵ 18 500), λ_{min} 228 nm.

Acknowledgment. Support for this research under Grants PB87-0478 and PB91-0759 from the DGICYT (M.E.C., Spain) is gratefully acknowledged. J.R.G. thanks the Ministerio de Educación y Ciencia (Spain) for an F.P.I. fellowship. We thank Prof. A. Tai (Osaka University) for the generous gift of (2R,4R)-2,4-pentanediol and Hoffmann-La Roche (Basel, Switzerland) for the generous gift of vitamin D₂.

Supplementary Material Available: Spectral and analytical data (¹H NMR, ¹³C NMR, IR, UV, MS, HRMS, and elemental analyses) and ¹H and ¹³C NMR spectra for compounds 2b, 3, 5, 8, 9a, 10a-h, 11, 12b, 13–14(a-h), 15, 17a-b, 18b, 19, 21, and 22 (32 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.